EconPapers    
Economics at your fingertips  
 

National carbon emissions from the industry process: Production of glass, soda ash, ammonia, calcium carbide and alumina

Zhu Liu

Applied Energy, 2016, vol. 166, issue C, 239-244

Abstract: China has become the world’s largest carbon emitter. Its total carbon emission output from fossil fuel combustion and cement production was approximately 10GtCO2 in 2013. However, less is known about carbon emissions from the production of industrial materials, such as mineral products (e.g., lime, soda ash, asphalt roofing), chemical products (e.g., ammonia, nitric acid) and metal products (e.g., iron, steel and aluminum). Carbon emissions from the production processes of these industrial products (in addition to cement production) are also less frequently reported by current international carbon emission datasets. Here we estimated the carbon emissions resulting from the manufacturing of 5 major industrial products in China, given China’s dominant position in industrial production in the world. Based on an investigation of China’s specific production processes, we devised a methodology for calculating emission factors. The results indicate that China’s total carbon emission from the production of alumina, plate glass, soda ash, ammonia and calcium carbide was 233 million tons in 2013, equivalent to the total CO2 emissions of Spain in 2013. The cumulative emissions from the manufacturing of these 5 products during the period 1990–2013 was approximately 2.5GtCO2, more than the annual total CO2 emissions of India. Thus, quantifying the emissions from industrial processes is critical for understanding the global carbon budget and developing a suitable climate policy.

Keywords: China; CO2; Industrial process; Climate policy (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915014464
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:166:y:2016:i:c:p:239-244

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2015.11.005

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:166:y:2016:i:c:p:239-244