A review of computational fluid dynamics for forced-air cooling process
Chun-Jiang Zhao,
Jia-Wei Han,
Xin-Ting Yang,
Jian-Ping Qian and
Bei-Lei Fan
Applied Energy, 2016, vol. 168, issue C, 314-331
Abstract:
Optimizing the design of fresh produce packaging is vital for ensuring that future food cold chains are more energy efficient and for improving produce quality by avoiding chilling injuries due to nonuniform cooling. Computational fluid dynamics models are thus increasingly used to study the airflow patterns and heat transfer inside ventilated packaging during precooling. This review discusses detailed and comprehensive mathematical modeling procedures for simulating the airflow, heat transfer, and mass transfer that occurs during forced-air precooling of fresh produce. These models serve to optimize packaging design and cooling efficiency. We summarize the most commonly used parameters for performance, which allows us to directly compare the cooling performance of various packaging designs.
Keywords: Computational Fluid Dynamics (CFD); Numerical analysis; Porous medium; Forced-air precooling; Package (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916300897
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:168:y:2016:i:c:p:314-331
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.01.101
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().