Fading Kalman filter-based real-time state of charge estimation in LiFePO4 battery-powered electric vehicles
KaiChin Lim,
Hany Ayad Bastawrous,
Van-Huan Duong,
Khay Wai See,
Peng Zhang and
Shi Xue Dou
Applied Energy, 2016, vol. 169, issue C, 40-48
Abstract:
A novel online estimation technique for estimating the state of charge (SoC) of a lithium iron phosphate (LiFePO4) battery has been developed. Based on a simplified model, the open circuit voltage (OCV) of the battery is estimated through two cascaded linear filtering stages. A recursive least squares filter is employed in the first stage to dynamically estimate the battery model parameters in real-time, and then, a fading Kalman filter (FKF) is used to estimate the OCV from these parameters. FKF can avoid the possibility of large estimation errors, which may occur with a conventional Kalman filter, due to its capability to compensate any modeling error through a fading factor. By optimizing the value of the fading factor in the set of recursion equations of FKF with genetic algorithms, the errors in estimating the battery’s SoC in urban dynamometer driving schedules-based experiments and real vehicle driving cycle experiments were below 3% compared to more than 9% in the case of using an ordinary Kalman filter. The proposed method with its simplified model provides the simplicity and feasibility required for real-time application with highly accurate SoC estimation.
Keywords: Fading Kalman filter; Open circuit voltage; Real-time estimation; Recursive least squares; State of charge (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (28)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916300848
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:169:y:2016:i:c:p:40-48
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.01.096
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().