Transient growth of acoustical energy associated with mitigating thermoacoustic oscillations
Xinyan Li,
Dan Zhao,
Xinglin Yang,
Huabing Wen,
Xiao Jin,
Shen Li,
He Zhao,
Changqing Xie and
Haili Liu
Applied Energy, 2016, vol. 169, issue C, 490 pages
Abstract:
Energy conversion from heat to sound is desirable in some practical applications such as thermoacoustic heat engines or cooling systems. However, it is unwanted in gas turbine or aeroengine combustors. In this work, a Rijke-type thermoacoustic model with a linearly varied mean temperature configuration is developed. An acoustically compact heat source is confined and characterized by a modified form of King’s law. Unlike previous models available in the literature, the mean temperature is assumed to undergo not only a sudden jump across the heat source but also linearly increasing and decreasing in the pre- and after-heating regions respectively. Such mean temperature configuration is consistent with the experimental measurement. Coupling the heat source model with a Galerkin series expansion of the acoustic fluctuations provides a platform to gain insight on (1) the nonlinearity of the thermoacoustic system, (2) onset of limit cycle oscillations, (3) predicting its non-normality behaviors, (4) energy distribution and transfer between neighboring eigenmodes, and (5) evaluating the performance of feedback controllers. Pseudospectra and transient energy growth analyses are then performed. It reveals that the system is non-normal. And it is associated with transient growth of acoustical energy. The non-normality is found to be less intensified in comparison with that in a system with an invariant mean temperature from pre- and after-heating regions. To mitigate these limit cycle oscillations, the heat-to-sound coupling is interrupted by implementing multiple monopole-like actuators driven by a LQG (Linear Quadratic Gaussian) controller. For comparison, a pole-placement controller is also implemented. Approximately 76dB sound pressure level reduction is achieved. However, implementing the LQG controller is shown to be associated with transient growth of acoustical energy, which has potential to trigger thermoacoustic instability. The present work opens up new applicable way to model thermoacoustic systems in the presence of a mean temperature gradient. Furthermore, it reveals new potential risk of applying active controllers to stabilize thermoacoustic systems.
Keywords: Thermoacoustic oscillations; Transient growth; Thermoacoustic instability; Active control; Energy conversion (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191630040X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:169:y:2016:i:c:p:481-490
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.01.060
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().