Optimization of hydrogen production with CO2 capture by autothermal chemical-looping reforming using different bioethanol purities
E. García-Díez,
F. García-Labiano,
L.F. de Diego,
A. Abad,
P. Gayán,
J. Adánez and
J.A.C. Ruíz
Applied Energy, 2016, vol. 169, issue C, 498 pages
Abstract:
Autothermal Chemical-Looping Reforming (a-CLR) is a process which allows hydrogen production avoiding the environmental penalty of CO2 emission typically produced in other processes. The major advantage of this technology is that the heat needed for syngas production is generated by the process itself. The heat necessary for the endothermic reactions is supplied by a Ni-based oxygen-carrier (OC) circulating between two reactors: the air reactor (AR), where the OC is oxidized by air, and the fuel reactor (FR), where the fuel is converted to syngas. Other important advantage is that this process also allows the production of pure N2 in the AR outlet stream. A renewable fuel such as bioethanol was chosen in this work due to their increasing worldwide production and the current excess of this fuel presented by different countries.
Keywords: Hydrogen production; CO2 capture; Chemical-looping reforming; Oxygen-carrier; Bioethanol; Heat balance (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916301945
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:169:y:2016:i:c:p:491-498
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.02.061
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().