An ensemble approach for short-term load forecasting by extreme learning machine
Song Li,
Lalit Goel and
Peng Wang
Applied Energy, 2016, vol. 170, issue C, 22-29
Abstract:
This paper proposes a novel ensemble method for short-term load forecasting based on wavelet transform, extreme learning machine (ELM) and partial least squares regression. In order to improve forecasting performance, a wavelet-based ensemble strategy is introduced into the forecasting model. The individual forecasters are derived from different combinations of mother wavelet and number of decomposition levels. For each sub-component from the wavelet decomposition, a parallel model consisting of 24 ELMs is invoked to predict the hourly load of the next day. The individual forecasts are then combined to form the ensemble forecast using the partial least squares regression method. Numerical results show that the proposed method can significantly improve forecasting performance.
Keywords: Ensemble method; Extreme learning machine; Partial least squares regression; Short-term load forecasting; Wavelet transform (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (70)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916302707
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:170:y:2016:i:c:p:22-29
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.02.114
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().