Fuel consumption model for conventional diesel buses
Jinghui Wang and
Hesham A. Rakha
Applied Energy, 2016, vol. 170, issue C, 394-402
Abstract:
Existing bus fuel consumption models produce a bang–bang type of control, implying that drivers would have to either accelerate at full throttle or brake at full braking in order to minimize their fuel consumption levels. This is obviously not correct. The paper is intended to enhance bus fuel consumption modeling by circumventing the bang–bang control problem using the Virginia Tech Comprehensive Power-based Fuel consumption Model (VT-CPFM) framework. The model is calibrated for a series of diesel-powered buses using in-field second-by-second data because of a lack of publicly available bus fuel economy data. The results reveal that the bus fuel consumption rate is concave as a function of vehicle power instead of convex, as was the case with light duty vehicles. The model is calibrated for an entire bus series and demonstrated to accurately capture the fuel consumption behavior of each individual bus within its series. Furthermore, the model estimates are demonstrated to be consistent with in-field measurements. The optimum fuel economy cruising speeds range between 40 and 50km/h, which is slightly lower than that for gasoline-powered light duty vehicles (60–80km/h). Finally, the model is demonstrated to capture transient fuel consumption behavior better than the Motor Vehicle Emission Simulator (MOVES) and produces a better fit to field measurements compared to the Comprehensive Modal Emission Model (CMEM).
Keywords: Heavy duty diesel; Transit bus; Fuel consumption modeling; VT-CPFM (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191630280X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:170:y:2016:i:c:p:394-402
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.02.124
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().