EconPapers    
Economics at your fingertips  
 

Using variable piston trajectory to reduce engine-out emissions

Chen Zhang and Zongxuan Sun

Applied Energy, 2016, vol. 170, issue C, 403-414

Abstract: Previously, the authors have proposed the concept of piston trajectory-based combustion control enabled by free piston engines (FPEs). With this novel method, the FPE realizes in-cycle adjustment of combustion phase and real-time control of in-cylinder temperature and pressure through variable piston trajectories. As a result, higher indicated thermal efficiency, compared to conventional internal combustion engines (ICEs), is achieved. In this paper, the effects of this new combustion control on engine-out emissions are investigated. First, a comprehensive model is developed that includes different piston trajectories in the FPE, a convective heat loss model and a reduced n-heptane reaction mechanism with major emissions species. Afterwards, the chemical kinetics of CO and NOx emissions are described in details that reveal the feasibility of reducing engine-out emissions by employing novel piston trajectories. At last, analyses of the corresponding simulation results and comparisons of emissions and thermal efficiencies between the FPE and conventional ICEs are presented, which further shows the advantages of the trajectory-based combustion control.

Keywords: Emissions control; Dynamic modeling; Free piston engine; Trajectory-based combustion control (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916302604
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:170:y:2016:i:c:p:403-414

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2016.02.104

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:170:y:2016:i:c:p:403-414