Dynamic thermal response of building material layers in aspect of their moisture content
K.J. Kontoleon and
C. Giarma
Applied Energy, 2016, vol. 170, issue C, 76-91
Abstract:
This paper investigates the impact of moisture content on the thermal inertia parameters of building material layers. Moisture variation affects the energy storage and therefore the energy gains/losses through buildings. To this effect the decrement factor and time lag are determined for three types of concrete layers and one of solid clay-bricks masonry layer. Their consideration is essential to enhance the design of building elements, from a thermal point of view, when exposed to varying moisture content conditions. Moisture content and relative humidity variations of each analysed layer, as defined by specific moisture storage functions, are shown to interrelate non-linearly with the layer resistor–capacitor circuit section parameters (thermal conductivity and volumetric heat capacity) showing notable consequences on the thermal inertia parameters. The dynamic thermal analysis is accomplished by using the thermal-circuit modelling approach and the nodal solution method. The deterioration of decrement factor and time lag due to moisture content are illustrated by appropriate metrics. Computer results for the studied layers with thicknesses varying from 10cm to 50cm show the influence of the variation of relative humidity and thickness on the decrement factor and time lag.
Keywords: Moisture content; Relative humidity; Material properties; Decrement factor; Time lag (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916300940
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:170:y:2016:i:c:p:76-91
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.01.106
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().