Effect of the pore size variation in the substrate of the gas diffusion layer on water management and fuel cell performance
Jaeman Park,
Hwanyeong Oh,
Yoo Il Lee,
Kyoungdoug Min,
Eunsook Lee and
Jy-Young Jyoung
Applied Energy, 2016, vol. 171, issue C, 200-212
Abstract:
The gas diffusion layer (GDL) is a key component of a proton exchange membrane (PEM) fuel cell due to its role as a pathway for fuel, air, and water. GDL determines the mass balance and water management in the PEM fuel cell. Thus, an investigation of the optimal structural characteristics of the GDL with improved water management is important to ensure high performance of the PEM fuel cell. In this study, a PEM fuel cell model that considers the structural characteristics of GDL is developed, and the various the GDL structural characteristics are analyzed and validated. Specifically, the effects of pore size variation in the substrate of the GDL on water management and cell performance are investigated. Two GDL samples with different pore sizes are evaluated according to the porosity, pore size, thickness, and internal contact angle to understand the basic structural characteristics of the GDL. The GDL structural parameters with the basic characteristics are incorporated into the developed model. The cell performance is predicted to be relative to the two-phase mass transport inside the GDL. The characteristics of the micro-porous layer (MPL) and MPL penetration part are found to be affected by the variation in the macro-pore size of the substrate. The water management capability of the GDL varies with these differences with respect to water retention and removal characteristics. Under the condition of relative humidity (RH) 100%, the averaged saturation value of the MPL and MPL penetration part of the GDL with small macro-pore in the substrate is 18.8% higher than that of the GDL with large macro-pore in the substrate. The cell performance is also affected by the operating conditions of relative humidity and current load. The voltage of the GDL with small macro-pore in the substrate at the current density of 1.6A/cm2 is 10.3% lower than that of the GDL with large macro-pore in the substrate under RH 100%.
Keywords: Proton exchange membrane fuel cell; Gas diffusion layer; Water management; Dynamic modeling; Pore size (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916302884
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:171:y:2016:i:c:p:200-212
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.02.132
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().