Short-term building energy model recommendation system: A meta-learning approach
Can Cui,
Teresa Wu,
Mengqi Hu,
Jeffery D. Weir and
Xiwang Li
Applied Energy, 2016, vol. 172, issue C, 263 pages
Abstract:
High-fidelity and computationally efficient energy forecasting models for building systems are needed to ensure optimal automatic operation, reduce energy consumption, and improve the building’s resilience capability to power disturbances. Various models have been developed to forecast building energy consumption. However, given buildings have different characteristics and operating conditions, model performance varies. Existing research has mainly taken a trial-and-error approach by developing multiple models and identifying the best performer for a specific building, or presumed one universal model form which is applied on different building cases. To the best of our knowledge, there does not exist a generalized system framework which can recommend appropriate models to forecast the building energy profiles based on building characteristics. To bridge this research gap, we propose a meta-learning based framework, termed Building Energy Model Recommendation System (BEMR). Based on the building’s physical features as well as statistical and time series meta-features extracted from the operational data and energy consumption data, BEMR is able to identify the most appropriate load forecasting model for each unique building. Three sets of experiments on 48 test buildings and one real building were conducted. The first experiment was to test the accuracy of BEMR when the training data and testing data cover the same condition. BEMR correctly identified the best model on 90% of the buildings. The second experiment was to test the robustness of the BEMR when the testing data is only partially covered by the training data. BEMR correctly identified the best model on 83% of the buildings. The third experiment uses a real building case to validate the proposed framework and the result shows promising applicability and extensibility. The experimental results show that BEMR is capable of adapting to a wide variety of building types ranging from a restaurant to a large office, and gives excellent performance in terms of both modeling accuracy and computational efficiency.
Keywords: Building energy consumption; Time series forecasting; Recommendation system; Machine learning; Meta-learning; Feature reduction (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191630438X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:172:y:2016:i:c:p:251-263
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.03.112
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().