EconPapers    
Economics at your fingertips  
 

Discharge, rest and charge simulation of lead-acid batteries using an efficient reduced order model based on proper orthogonal decomposition

Amir Babak Ansari, Vahid Esfahanian and Farschad Torabi

Applied Energy, 2016, vol. 173, issue C, 152-167

Abstract: The real-time battery monitoring often involves two contradicting requirements, i.e., high accurate modeling and low computational time. The main contribution of this study is developing a reduced order model to accurately simulate a lead-acid battery without any simplification which can be used for real-time monitoring, optimization and control purposes. In this paper, the governing equations of lead-acid battery including conservation of charge in solid and liquid phases and conservation of species are solved simultaneously during discharge, rest and charge processes using an efficient reduced order model based on proper orthogonal decomposition (POD). A comprehensive description of numerical difficulties of lead-acid battery transport equations is also discussed both mathematically and graphically. Effect of different operating conditions such as applied current density and the dependency of open circuit potential to the acid concentration on dynamic behavior of lead-acid cell are investigated to show the capability of present method. Moreover, an extensive analysis of eigenvalues, spatial patterns and temporal trends of lead-acid battery model is presented to comprehensively determine the basic dynamic characteristics. The obtained numerical results show that not only the POD-based ROM of lead-acid battery significantly decreases the computational time (speed-up factor of 15) but also there is an excellent agreement with the results of computational fluid dynamics (CFD) models.

Keywords: Lead-acid battery; Reduced order modeling; Discharge, rest and charge (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916304585
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:173:y:2016:i:c:p:152-167

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2016.04.008

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:173:y:2016:i:c:p:152-167