Thermal energy storage and retrieval characteristics of a molten-salt latent heat thermal energy storage system
P. Zhang,
F. Ma and
X. Xiao
Applied Energy, 2016, vol. 173, issue C, 255-271
Abstract:
In the present study, a shell-and-tube latent heat thermal energy storage (LHTES) system is built using the eutectic molten salt as the phase change material (PCM) to make an efficient use of solar energy at medium-temperature of around 200.0°C. The nickel foam is embedded in pure PCM (molten salt) to form composite PCM to improve the performance of the LHTES system through enhancing the effective thermal conductivity of the PCM. The performances of the systems using pure molten salt and composite PCM are investigated both experimentally and numerically. The oil is used as the heat transfer fluid (HTF) and the influence of mass flow rate of the HTF on the thermal energy storage and retrieval is investigated in the experiments. The charging and discharging time durations, mean power and energy efficiency are estimated to evaluate the performance of the LHTES system. Meanwhile, a three-dimensional (3D) numerical model is developed based on the enthalpy-porosity model and two-temperature energy equations to investigate the thermal energy storage and retrieval of the LHTES system, and the detailed heat transfer characteristics during the melting/solidification of the PCM are understood. The results indicate that encapsulating molten salt with nickel foam to enhance the effective thermal conductivity of the PCM can improve the performance of the LHTES system. The information provided in the present study will be helpful for the LHTES system design, construction and application using molten salt for solar energy storage.
Keywords: Latent heat thermal energy storage; Nitrate molten salt; Nickel foam; Heat transfer characteristics; Thermal energy storage and retrieval (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916304615
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:173:y:2016:i:c:p:255-271
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.04.012
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().