EconPapers    
Economics at your fingertips  
 

Theoretical analysis and experimental confirmation of exhaust temperature control for diesel vehicle NOx emissions reduction

Jibing Jiang and Dinggen Li

Applied Energy, 2016, vol. 174, issue C, 232-244

Abstract: Selective catalyst reduction (SCR) has been demonstrated as an efficient technology for the abatement of NOx emissions from diesel vehicles. However, it has become more and more challenging to meet stringent vehicle emissions standards due to fluctuating exhaust temperatures and high temperature exhaust gas caused by the regeneration of diesel particulate filters (DPFs). Therefore, a novel design for exhaust temperature control, based on controllable heat pipes and latent thermal energy storage, is proposed to realize more durable and efficient NOx emissions reduction. By adopting the concept of peak load shifting, the excess thermal energy of exhaust gas can be stored in phase change materials (PCMs), and released to maintain a relatively stable temperature if a temperature difference exists between the working fluid inside the heat pipes and the PCMs. In order to investigate the feasibility of our novel design, theoretical analysis and numerical simulations are combined to fully describe the dynamic behavior of temperature control. The exhaust temperature effects on NOx emissions reduction is evaluated by an accurate SCR model which is validated by the relevant experiments. The results indicate that the fluctuation of exhaust temperature is limited to 30K after finishing the preheating process during the European transient cycle (ETC) test with an objective temperature of 563K. However, stable exhaust temperatures require an additional 400s for the PCMs to be prepared for an adequate supply of thermal energy. Compared with bare emissions, the improved elimination efficiency of NOx emissions can reach more than 90% in ETC testing, which satisfies the severe emission regulations with more sustainable and environmentally friendly practical application.

Keywords: Selective catalyst reduction (SCR); Temperature control; NOx emissions reduction (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916305530
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:174:y:2016:i:c:p:232-244

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2016.04.096

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:174:y:2016:i:c:p:232-244