Novel hierarchical SnO2 microsphere catalyst coated on gas diffusion electrode for enhancing energy efficiency of CO2 reduction to formate fuel
Yishu Fu,
Yanan Li,
Xia Zhang,
Yuyu Liu,
Jinli Qiao,
Jiujun Zhang and
David P. Wilkinson
Applied Energy, 2016, vol. 175, issue C, 536-544
Abstract:
The conversion of carbon dioxide to value-added fuel using electrical energy generated intermittently from renewable energy sources is very promising in terms of energy usage reconciliation. The process converts greenhouse carbon dioxide gas to produce diverse attractive chemicals and fuels like methanol, formate, and other hydrocarbons. In this paper, the electroreduction of CO2 to formate in aqueous solution is performed by using novel hierarchical tin oxide microsphere (HMS-SnO2) particles deposited over gas diffusion layer electrode (HMS-SnO2/GDE). The experiment is carried out in a divided H-type two-compartment cell with a Nafion® membrane as the diaphragm separating the cathodic and anodic compartments. The HMS-SnO2 catalysts are synthesized by a facile hydrothermal self-assembled process using different ratios of ethanol to distilled water in the synthetic solution. Due to the outstanding catalytic activity and selectivity toward CO2 electroreduction, SnO2-86/GDE exhibits a high Faradaic efficiency of 62% toward formate formation at −1.7V vs. SHE (Standard Hydrogen Electrode). The electrode durability is also observed with a stable current density over 12h of continuous electrolysis operation. The superior performance is credited to the morphology- and size-controlled hierarchical structure, which may provide more active sites to accelerate the slow kinetics of CO2 reduction, leading to the improved energy efficiency. During electrolysis process, KHCO3 electrolyte is found to have some contribution to formate formation on the micro-structured tin oxide catalysts coated GDE electrode.
Keywords: Electrochemical CO2 reduction; Micro/nano-SnO2 particles; Formate; Faradaic efficiency; Electrode stability (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916304391
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:175:y:2016:i:c:p:536-544
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.03.115
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().