ANN-based modeling and reducing dual-fuel engine’s challenging emissions by multi-objective evolutionary algorithm NSGA-II
S. Lotfan,
R. Akbarpour Ghiasi,
M. Fallah and
M.H. Sadeghi
Applied Energy, 2016, vol. 175, issue C, 99 pages
Abstract:
In this study, the combination of artificial neural network (ANN) and non-dominated sorting genetic algorithm II (NSGA-II) has been implemented for modeling and reducing CO and NOx emissions from a direct injection dual-fuel engine. A multi-layer perceptron (MLP) network is developed to predict the values of the emissions based on experimental data. The controllable variables such as engine speed, output power, intake temperature, mass flow rate of diesel fuel, and mass flow rate of the gaseous fuel are considered as input parameters. In order to identify the uncertainties due to the experiments and the ANN-based model, uncertainty analysis is carried out. Finally, optimum values of intake temperature, mass flow rate of diesel and gaseous fuels are obtained for a desired output power and engine speed via NSGA-II. The use of the developed evolutionary optimization algorithm allows the calculation of the Pareto-optimal set of designs under any combination of engine speed and output power, defined in the range of the experiments.
Keywords: Artificial neural networks; Non-dominated sorting genetic algorithm; Dual-fuel engine; Emission reduction (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (31)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191630561X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:175:y:2016:i:c:p:91-99
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.04.099
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().