Impact of neighborhood design on energy performance and GHG emissions
Caroline Hachem
Applied Energy, 2016, vol. 177, issue C, 422-434
Abstract:
This paper presents an innovative and holistic approach to the analysis of the impact of selected design parameters of a new solar community on its environmental performance, in terms of energy efficiency and carbon footprint (green-house gas (GHG) emissions). The design parameters include energy performance level of buildings, density, type of the neighborhood (mixed-use vs residential), location of the commercial center relative to residential areas and the design of the streets. Energy performance is measured as the balance between overall energy consumption for building operations (assuming an all-electric neighborhood) and electricity generation potential through integration of PV panels on available roof surfaces. Greenhouse gas emissions are those associated with building operations and transport.
Keywords: Mixed-use communities; Energy consumption; Transport; Building operations; GHG emissions; Electricity generation potential (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191630722X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:177:y:2016:i:c:p:422-434
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.05.117
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().