A new predictive multi-zone model for HCCI engine combustion
M. Bissoli,
A. Frassoldati,
A. Cuoci,
E. Ranzi,
M. Mehl and
T. Faravelli
Applied Energy, 2016, vol. 178, issue C, 826-843
Abstract:
This work introduces a new predictive multi-zone model for the description of combustion in Homogeneous Charge Compression Ignition (HCCI) engines. The model exploits the existing OpenSMOKE++ computational suite to handle detailed kinetic mechanisms, providing reliable predictions of the in-cylinder auto-ignition processes. All the elements with a significant impact on the combustion performances and emissions, like turbulence, heat and mass exchanges, crevices, residual burned gases, thermal and feed stratification are taken into account. Compared to other computational approaches, this model improves the description of mixture stratification phenomena by coupling a wall heat transfer model derived from CFD application with a proper turbulence model. Furthermore, the calibration of this multi-zone model requires only three parameters, which can be derived from a non-reactive CFD simulation: these adaptive variables depend only on the engine geometry and remain fixed across a wide range of operating conditions, allowing the prediction of auto-ignition, pressure traces and pollutants. This computational framework enables the use of detail kinetic mechanisms, as well as Rate of Production Analysis (RoPA) and Sensitivity Analysis (SA) to investigate the complex chemistry involved in the auto-ignition and the pollutants formation processes. In the final sections of the paper, these capabilities are demonstrated through the comparison with experimental data.
Keywords: HCCI engine; Multi-zone model; Kinetic analyses (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916308376
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:178:y:2016:i:c:p:826-843
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.06.062
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().