Biogas production through syntrophic acetate oxidation and deliberate operating strategies for improved digester performance
Maria Westerholm,
Jan Moestedt and
Anna Schnürer
Applied Energy, 2016, vol. 179, issue C, 124-135
Abstract:
Anaerobic degradation of protein-rich materials has high methane potential and produces nutrient-rich residue, but requires strategies to avoid ammonia inhibition. A well-adapted process can cope with substantially higher ammonia levels than an unadapted process and analyses of pathways for methanisation of acetate, combined with determination of microbial community structure, strongly indicate that this is due to a significant contribution of syntrophic acetate oxidation. The microorganisms involved in syntrophic acetate oxidation thus most likely occupy a unique niche and play an important role in methane formation. This review summarises current insight of syntrophic acetate oxidising microorganisms, their presence and the detection of novel species and relate these observations with operating conditions of the biogas processes in order to explore contributing factors for development of an ammonia-tolerant microbial community that efficiently degrades acetate through the syntrophic pathway. Besides high ammonia level, acetate concentration, temperature and methanogenic community structure are considered in this review as likely factors that shape and influence SAO-mediated microbial ecosystems. The main purpose of this review is to facilitate process optimisation through considering the activity and growth of this key microbial community.
Keywords: Syntrophic acetate oxidising bacteria; Methanogens; Ammonia inhibition; Operational parameters; Trace metals; Temperature (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (38)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916308364
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:179:y:2016:i:c:p:124-135
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.06.061
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().