A model for the performance assessment of hybrid coolers by means of transient numerical simulation
D’Antoni, M.,
D. Romeli and
R. Fedrizzi
Applied Energy, 2016, vol. 181, issue C, 477-494
Abstract:
This paper presents the development of a numerical model of a hybrid cooler for transient simulation purposes as a component of a thermal energy system. The model uses a modular definition of the control volume, and is suitable for modelling any staggered coil geometry. The set of parameters required for modelling the hybrid cooler is typical of the so-called design models. A rigorous analysis of sensible and latent heat fluxes due to spray water evaporation is included. Further, the model can be exploited for the development of user-defined control strategies of fans and water spray systems. The model is validated using monitored data from a pilot system installation in which a commercial hybrid cooler is operated under typical summer south European working conditions.
Keywords: Heat rejection; Spray water; Heat and mass transfer; Evaporative cooling; Finned-tube heat exchanger; Numerical modelling (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916312089
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:181:y:2016:i:c:p:477-494
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.08.110
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().