EconPapers    
Economics at your fingertips  
 

Combustion characteristics and NOX emissions of biogas fuels with various CO2 contents in a micro co-generation spark-ignition engine

Yungjin Kim, Nobuyuki Kawahara, Kazuya Tsuboi and Eiji Tomita

Applied Energy, 2016, vol. 182, issue C, 539-547

Abstract: Biogas is a renewable alternative fuel for internal combustion engines that has several advantages over conventional fuels, including lower costs and reduced levels of harmful emissions. In particular, it exhibits a neutral recirculation loop for carbon dioxide (CO2), which is one of the main causes of global warming. In this study, we investigated biogas fuels with various compositions using a micro co-generation engine system. The ratio of methane to CO2 and engine load were varied, and the intake air and fuel flow rates were controlled to change the equivalence ratio. The results show that for a given engine load, the ignition delay and combustion period increased with CO2 content, and the combustion speed decreased. The fuel consumption increased slightly with CO2 content; however, the thermal efficiency improved using a lean burn strategy, resulting in lower nitrogen oxide (NOX) emission, and moreover, the use of biogas with the stoichiometric air–fuel ratio appears effective in reducing NOX emissions and can improve the fuel economy at higher loads.

Keywords: Biogas; Carbon dioxide; SI combustion; Lean burn; NOx reduction (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916312612
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:182:y:2016:i:c:p:539-547

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2016.08.152

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:182:y:2016:i:c:p:539-547