A three-dimensional mathematical model for the anode of a direct ethanol fuel cell
R.S. Gomes and
A.L. De Bortoli
Applied Energy, 2016, vol. 183, issue C, 1292-1301
Abstract:
In this paper, we develop a mathematical model to analyze a direct ethanol fuel cell (DEFC). The three-dimensional model is able to predict the flow on all layers of the fuel cell and allow a better analysis of physical and chemical phenomena that occur inside it. In addition, the calculation of mole fraction of species allows one to observe that the diffusion layer has great influence on mass transfer of fuel between the input channel and the catalyst layer. Numerical simulation of reactive flow was made based on the central finite difference method. The equations were integrated in time using the simplified Runge-Kutta multistage scheme. The results obtained are in agreement with the experimental data found in the literature, for different feed concentrations of ethanol and for different operating temperatures of the cell. In this way, the paper contributes to the development of a model for direct ethanol fuel cells, taking into account all losses overpotentials at the anode and the cathode, providing a better understanding of the physical and chemical behavior inside the cell, and on the conversion of chemical energy into electrical energy.
Keywords: Fuel cells; Ethanol; Proton exchange membrane; Three-dimensional model; Numerical simulation (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191631385X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:183:y:2016:i:c:p:1292-1301
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.09.083
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().