Synthesis of a highly efficient Li4SiO4 ceramic modified with a gluconic acid-based carbon coating for high-temperature CO2 capture
Ke Wang,
Zhongyun Zhou,
Pengfei Zhao,
Zeguang Yin,
Zhen Su and
Ji Sun
Applied Energy, 2016, vol. 183, issue C, 1418-1427
Abstract:
A unique gluconic acid treatment coupled with a carbon coating process was used to synthesize Li4SiO4 ceramics (GAC-Li4SiO4) with superior performance for high-temperature CO2 capture. The effects of different synthetic methods, carbonization temperatures, acid sources and acid contents on the performance of the sorbent were studied and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen absorption and thermogravimetric analyses. After the gluconic acid treatment and carbon coating, the GAC-Li4SiO4 had a small crystal size, hollow morphology and enhanced pore features. Significant improvements in CO2 sorption performance (i.e., low absorption temperature, fast absorption rate, and high capacity) were thus obtained. Moreover, the carbonization temperature, acid content and acid type greatly affected the morphology and chemisorption properties of the Li4SiO4 sorbents. Under the optimized synthetic conditions, the maximum CO2 absorption capacity was 34.7% after isothermal absorption at 665°C for 10min. This sorbent also maintained good cyclic properties.
Keywords: CO2 capture; Gluconic acid; Carbon coating; Li4SiO4 (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916314076
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:183:y:2016:i:c:p:1418-1427
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.09.105
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().