EconPapers    
Economics at your fingertips  
 

Novel state-of-health diagnostic method for Li-ion battery in service

R. Mingant, J. Bernard and V. Sauvant-Moynot

Applied Energy, 2016, vol. 183, issue C, 390-398

Abstract: The development of improved State-of-Health (SoH) diagnostic methods is a current research topic for battery-powered applications. For instance, the current rapid development of Electric Vehicles (EV) creates a strong demand for an accurate and reliable on-board SoH indicator during operation. Such an indicator is a key parameter required to optimize battery energy management and to track the degradation of the system performance. The electrochemical impedance spectrum (EIS) of an electrochemical system is a powerful lab-based diagnostic technique, usually measured using a frequency response analyzer. In this paper, we present an innovative diagnostic technique based on analysis of free voltage and current signals to give a so called “quasi-electrochemical impedance spectrum” (QEIS) and demonstrate its application on a Li-ion battery during a real EV duty cycle. It is worth noting that in our technique no additional signal is applied to the cell, since the current flowing into cells during use on-board is directly processed in the data treatment step.

Keywords: Li-ion battery; Lithium Iron Phosphate-graphite (LFP-C); Ageing; State of Health (SOH); Fast Fourier Transform (FFT); Electrochemical Impedance Spectroscopy (EIS) (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916312181
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:183:y:2016:i:c:p:390-398

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2016.08.118

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:183:y:2016:i:c:p:390-398