Performance assessment and productivity of a simple-type solar still integrated with nanocomposite energy storage system
Ashraf Elfasakhany
Applied Energy, 2016, vol. 183, issue C, 399-407
Abstract:
Paraffin wax (PW) is one of promising solar energy storage materials in solar distillers because of its relatively large latent heat with a stable phase change process. However, paraffin’s low thermal conductivity is a negative aspect for its efficient practice. In this study, adding nanomaterial to enhance paraffin’s low thermal conductivity and its performance parameters is examined. Three cases have been investigated and compared to each others, case 1 without PW, case 2 with PW, and case 3 with copper-PW nanocomposite (NCPW). The results showed apparent advantage of nanocomposite on thermal conductivity of PW and that enhanced the heat energy storage and water productivity. The productivity increased by about 125% and 119% for cases 3 and 2, respectively, compared to case 1. The system working time extended during night by 5h and 6h at applying PW and NCPW, respectively. It was also shown that adding nanomaterials to PW can not only increase its thermal conductivity but also the system efficiency and thermal storage capacity.
Keywords: Paraffin wax; Copper nanocomposite; Experiments; Desalination; Productivity (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916313046
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:183:y:2016:i:c:p:399-407
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.09.002
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().