EconPapers    
Economics at your fingertips  
 

Catalytic hydrothermal liquefaction of microalgae using nanocatalyst

Mohammad Saber, Abooali Golzary, Morteza Hosseinpour, Fumitake Takahashi and Kunio Yoshikawa

Applied Energy, 2016, vol. 183, issue C, 566-576

Abstract: Due to exhaustibility of fossil fuels and their adverse effects on the environment, bio-oil has been considered as an alternative energy source for fuel applications. Currently, there are two main processes for bio-oil production: pyrolysis and hydrothermal liquefaction (HTL). The hydrothermal liquefaction is defined as biomass-to-liquid conversion route carried out in the hot compressed water with or without the presence of a catalyst. The major concern in HTL is the high pressure of the process which results in high capital cost of equipment. Thus, the process pressure and temperature should be reduced, but at a lower temperature, bio-oil yield is not high enough to make HTL an economical process for sustainable fuel production. In this research, we investigated the applicability of a nanocatalyst (nano-Ni/SiO2), an acid catalyst (synthesized zeolite), and an alkali catalyst (Na2CO3) to increase the bio-oil yield at low temperatures (210°C, 230°C, 250°C). The major result of this work was higher bio-oil yields with the order of nano-Ni/SiO2>zeolite>Na2CO3 in hydrothermal liquefaction of microalgae Nannochloropsis sp.. The highest bio-oil yield (30.0wt%) was obtained at 250°C by using Nano-Ni/SiO2. Moreover, applying catalyst resulted in a decrease in the oxygen and the nitrogen contents of the bio-oil and consequently an increase in its heating value. The results of this research also suggest the possibility of nanocatalyst recovery for 2–3 times.

Keywords: Bio-oil; Hydrothermal liquefaction; Nanocatalyst; Energy efficiency (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916313198
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:183:y:2016:i:c:p:566-576

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2016.09.017

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:183:y:2016:i:c:p:566-576