A new insight into opaque envelopes in a passive solar house: Properties and roles
Linshuang Long,
Hong Ye and
Minghou Liu
Applied Energy, 2016, vol. 183, issue C, 685-699
Abstract:
Passive solar houses are effective solutions for minimizing the operating energy of buildings. The building envelopes of passive solar houses exert a significant influence on the degree of indoor thermal comfort. The focus of this study was the construction of high-performance opaque envelopes, i.e., the roof and walls, for a passive solar house, and a new conception of the envelopes from the perspective of the relation between the properties and roles was provided. The discussion was conducted based on a comprehensive range of envelope materials that were distinguished by the thermal conductivity and volumetric heat capacity. For the first time, each part of the envelopes was analyzed separately rather than considered as an entire envelope. By analyzing each envelope individually, the optimum properties of each envelope were found to be distinct from each other. The distinctions are determined by the dominant role of each envelope, which is associated with the location and absorbed solar irradiation. For summer or hot climate applications, when the dominant role is a cooler, the envelope, e.g., the south wall, should consist of materials with high thermal conductivity and large heat capacity; if a heater is the dominant role, the envelope, e.g., the roof, should consist of materials with low thermal conductivity. For winter or cold climate applications, the envelopes with a leading role of a heater or a cooler require materials with high or low thermal conductivity, respectively. Under the guidance of the results, a discussion on the construction of a high-performance opaque envelope with the current materials was also provided.
Keywords: Passive solar house; Opaque envelope; Thermal conductivity; Heat capacity; Insulating material; Phase change material (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916313332
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:183:y:2016:i:c:p:685-699
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.09.032
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().