EconPapers    
Economics at your fingertips  
 

Multi-year stochastic generation capacity expansion planning under environmental energy policy

Heejung Park and Ross Baldick

Applied Energy, 2016, vol. 183, issue C, 737-745

Abstract: We present a multi-year stochastic generation capacity expansion planning model to investigate changes in generation building decisions and carbon dioxide (CO2) emissions under environmental energy policies, including carbon tax and a renewable portfolio standard (RPS). A multi-stage stochastic mixed-integer program is formulated to solve the generation expansion problem. The uncertain parameters of load and wind availability are modeled as random variables and their independent and identically distributed (i.i.d.) random samples are generated using the Gaussian copula method, which represents the correlation between random variables explicitly. A multi-stage scenario tree is formed with the generated random samples, and the scenario tree is reduced for improved computation performance. A rolling-horizon method is applied to obtain one generation plan at each stage.

Keywords: Generation planning; Stochastic optimization; Wind power; Multi-stage stochastic program; Greenhouse gas emissions; Scenario reduction (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916312739
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:183:y:2016:i:c:p:737-745

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2016.08.164

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:183:y:2016:i:c:p:737-745