The direct solid-solid reaction between coal char and iron-based oxygen carrier and its contribution to solid-fueled chemical looping combustion
Liangyong Chen,
Jinhua Bao,
Liang Kong,
Megan Combs,
Heather S. Nikolic,
Zhen Fan and
Kunlei Liu
Applied Energy, 2016, vol. 184, issue C, 9-18
Abstract:
Chemical looping combustion (CLC) is an advanced technology developed to achieve highly efficient fuel combustion with in-situ CO2 capture. In this process, metal oxide particles are used as an oxygen carrier (OC) to transport lattice oxygen for fuel combustion. In this process, a stream of CO2 and steam is produced by successful separation of atmospheric N2 and the gaseous product of combustion. In CLC of solid fuel, metal oxide particles are physically mixed and react with solid fuel at high temperature using gasification enhancer, such as steam, or CO2. A full understanding of the reaction mechanism between the OC and solid fuel is vital for OC development and the fuel reactor design. Several reactions may be involved in solid-fueled CLC when an iron-based OC is used, including (1) solid fuel devolatilization/gasification, (2) OC reduction with intermediate syngas, (3) the solid-solid reaction between OC and solid fuel via direct contact, and (4) the homogeneous water-gas shift reaction. The former two reactions have been extensively studied in recent years. This study focuses on the third reaction, the solid-solid reaction, which occurs thermodynamically at typical operational temperatures of CLC. The direct solid-solid reaction between coal char and two iron-based OCs via random particle collision in a fluidization bed regime was investigated and focuses on the reaction kinetics and the carbon conversion at different temperature. The contribution of the solid-solid reaction to the global carbon conversion was estimated for steam-gasified CLC at different temperature. The solid-solid reaction via static contact in a thermal-gravimetric analyzer (TGA) was also tested to evaluate the role of different OCs and to better understand the reaction mechanism between the two solid particles.
Keywords: Chemical looping combustion; Solid fuel; Iron-based oxygen carrier; Direct solid-solid contact reaction (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916313873
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:184:y:2016:i:c:p:9-18
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.09.085
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().