Short-term power load probability density forecasting method using kernel-based support vector quantile regression and Copula theory
Yaoyao He,
Rui Liu,
Haiyan Li,
Shuo Wang and
Xiaofen Lu
Applied Energy, 2017, vol. 185, issue P1, 254-266
Abstract:
Penetration of smart grid prominently increases the complexity and uncertainty in scheduling and operation of power systems. Probability density forecasting methods can effectively quantify the uncertainty of power load forecasting. The paper proposes a short-term power load probability density forecasting method using kernel-based support vector quantile regression (KSVQR) and Copula theory. As the kernel function can influence the prediction performance, three kernel functions are compared in this work to select the best one for the learning target. The paper evaluates the accuracy of the prediction intervals considering two criteria, prediction interval coverage probability (PICP) and prediction interval normalized average width (PINAW). Considering uncertainty factors and the correlation of explanatory variables for power load prediction accuracy are of great importance. A probability density forecasting method based on Copula theory is proposed in order to achieve the relational diagram of electrical load and real-time price. The electrical load forecast accuracy of the proposed method is assessed by means of real datasets from Singapore. The simulation results show that the proposed method has great potential for power load forecasting by selecting appropriate kernel function for KSVQR model.
Keywords: Short-term power load probability density forecasting; Support vector quantile regression; PI coverage probability; PI normalized average width; Copula theory; Real-time price (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (44)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916315239
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:185:y:2017:i:p1:p:254-266
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.10.079
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().