Development of a three-step hybrid simulation approach (THSA) for engine combustion investigation coupled with a multistep phenomenon soot model and energy balance analysis
Wenbin Yu,
Wenming Yang,
Feiyang Zhao,
Dezhi Zhou,
Kunlin Tay and
Balaji Mohan
Applied Energy, 2017, vol. 185, issue P1, 482-496
Abstract:
A comprehensive simulation approach is important in order to better replicate the complex combustion process over a wide range of engine operating conditions. This will allow a more accurate understanding of crucial factors that affect engine combustion. In this study, the entire engine combustion process was systematically considered and a three-step hybrid simulation approach (THSA) was proposed in order to achieve a more accurate engine combustion simulation. For this approach, a so-called “full cavitation” model was selected for 3-dimensional (3D) internal nozzle flow study and a Kelvin-Helmholtz/Rayleigh-Taylor (KH-RT) model was used for 3D spray prediction wherein the flow variables at the nozzle outlet obtained through internal nozzle flow simulations were used as the input information in the KIVA4 code. Besides, a compact and accurate primary reference fuel (PRF) mechanism with 46 species and 144 reactions, which is coupled with a multi-step phenomenon soot model and energy balance analysis, was used for engine combustion simulation. Based on it, a numerical study was conducted for a comparison between conventional direct injection combustion (CDIC) and partially premix combustion (PPC) fueled with diesel, gasoline and diesel/gasoline blend fuel (GD). The final result indicates that with PPC and gasoline fuel, an optimized and high thermal efficiency of 52.5% can be realized along with extremely low NOx and soot emissions.
Keywords: Internal nozzle flow; Cavitation; Spray characteristics; Combustion; Soot model; Energy balance (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916315392
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:185:y:2017:i:p1:p:482-496
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.10.137
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().