Ignition and combustion characteristics of n-pentanol–diesel blends in a constant volume chamber
Yinjie Ma,
Sheng Huang,
Ronghua Huang,
Yu Zhang and
Shijie Xu
Applied Energy, 2017, vol. 185, issue P1, 519-530
Abstract:
Pentanol is considered as one of the most promising alternative biofuels due to its excellent physicochemical properties. The objective of this work was to compare the ignition and combustion characteristics of different n-pentanol/diesel blends in an optical constant volume combustion chamber. The tested fuels included 20% (D80P20) and 40% (D60P40) of n-pentanol blended with diesel in volume, and pure diesel (D100). Broadband chemiluminescence technique was used to measure the timing and location of spray ignition. A high-speed CCD camera with two ND8 dimmer lenses was used to capture the incandescence radiated from the soot particles during combustion. A wide range of experimental conditions was investigated. The ambient temperature ranged from 800K to 1200K and the oxygen concentration ranging from 10% to 21%, covering both the conventional and low temperature combustion regimes. The results show that pure diesel has shorter ignition delay and distance comparing to pentanol blends. A larger blending proportion of pentanol D60P40 advances the ignition phase more than the D80P20 in low oxygen concentration conditions. Due to the fuel-borne oxygen and the dilution effect, the natural flame luminosity is reduced significantly with the increase of pentanol ratio in most conditions except under the intermediate temperature region of 1000K. In that condition, the shorter ignition delay and flame lift-off length of pentanol blends cause a slightly increase in the natural flame luminosity. The natural flame luminosity images showed that the oxygen-contained structure of pentanol could accelerate soot oxidation under all conditions. This indicates that pentanol blends could decrease final soot emissions in internal combustion engines.
Keywords: Pentanol/diesel blends; Constant volume combustion chamber; Ignition characteristics; Flame lift-off length; Natural flame luminosity (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916315859
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:185:y:2017:i:p1:p:519-530
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.11.002
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().