Experimental study on ceiling gas temperature and flame performances of two buoyancy-controlled propane burners located in a tunnel
Huaxian Wan,
Zihe Gao,
Jie Ji,
Kaiyuan Li,
Jinhua Sun and
Yongming Zhang
Applied Energy, 2017, vol. 185, issue P1, 573-581
Abstract:
Multiple energy sources in a tunnel might lead to merge of flames with small enough spacings, releasing more heat and pollutant emissions than a single energy release source in tunnel and thus posing a great threat to tunnel structure, facilities and trapped people. As the heat detection, controlling and cooling systems are originally designed for the single energy release source, while the spacing between energy sources in tunnel is changeable and unpredictable. Then it is important and helpful to research on the much different characteristics of multiple energy sources with interacting ceiling flames for effective control the high risk scenarios. This paper aims to study the ceiling gas temperature profile and flame properties induced by two interacting energy sources in tunnel so as to improve the understanding of the arrangement of heat detectors and water sprinklers in tunnel. Two identical propane burners were used as energy sources located in a longitudinal array in tunnel. The total energy release rate and burner spacing were varied. The flame merging probability, ceiling gas temperature, vertical flame height and longitudinal flame extension were measured. The criteria of beginning merging and fully merging of flames are respectively proposed for two energy sources in tunnel. Results showed that the area of ceiling flame region increases with higher energy release rate. Models for predicting the ceiling gas temperature profiles induced by two energy sources in tunnel are established respectively for weak and strong plumes impinging on the ceiling. A modified model for predicting the combined vertical and longitudinal flame lengths from two burners in tunnel is proposed involving the normalized energy release rate, burner size and spacing. Finally, the comparison between models proposed for ceiling gas temperatures and flame lengths in tunnel and other configurations identifies the high risk of multiple energy sources in tunnel.
Keywords: Tunnel; Multiple energy sources; Flame merging; Temperature decay profile; Flame length (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916315811
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:185:y:2017:i:p1:p:573-581
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.10.131
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().