A comprehensive model for analysis of real-time optical performance of a solar power tower with a multi-tube cavity receiver
Yu Qiu,
Ya-Ling He,
Peiwen Li and
Bao-Cun Du
Applied Energy, 2017, vol. 185, issue P1, 589-603
Abstract:
A comprehensive model and corresponding code named after SPTOPTIC for analysis of the real-time optical performance of a Solar Power Tower (SPT) with a Multi-Tube Cavity Receiver (MTCR) were developed using Monte Carlo Ray Tracing (MCRT) method. After validation, the model was used to study the optical performance of the DAHAN plant. The model-obtained results show that the solar flux in the MTCR exhibits a significant non-uniformity, showing a maximum flux of 5.141×105Wm−2 on the tubes. A comparison of the tracking models indicates that it is a good practice to treat the tracking errors as the random errors of the tracking angles when considering the random effect on the solar flux distribution. Study also indicates that multi-point aiming strategy of tracking helps homogenizing the flux and reducing the energy maldistribution among the tubes. Additionally, time-dependent optical efficiencies were investigated, and the yearly efficiency for the energy absorbed by the tubes was found to be 65.9%. At the end of the study, the cavity effect on the efficiency was revealed quantitatively, which indicates that the optical loss can be reduced significantly by the cavity effect, especially when the coating absorptivity is relatively low. It is concluded that the present model is reliable and suitable for predicting both the detailed real-time solar flux and the real-time efficiency of SPT.
Keywords: Solar power tower; Multi-tube cavity receiver; Optical model; Multi-point aiming strategy; Real-time solar flux; Real-time efficiency (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (52)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916315781
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:185:y:2017:i:p1:p:589-603
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.10.128
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().