Economics at your fingertips  

Distributed EMPC of multiple microgrids for coordinated stochastic energy management

Peng Kou, Deliang Liang and Lin Gao

Applied Energy, 2017, vol. 185, issue P1, 939-952

Abstract: The concept of multi-microgrids has the potential to improve the reliability and economic performance of a distribution system. To realize this potential, a coordination among multiple microgrids is needed. In this context, this paper presents a new distributed economic model predictive control scheme for the coordinated stochastic energy management of multi-microgrids. By optimally coordinating the operation of individual microgrids, this scheme maintains the system-wide supply and demand balance in an economical manner. Based on the probabilistic forecasts of renewable power generation and microgrid load, this scheme effectively handles the uncertainties in both supply and demand. Using the Chebyshev inequality and the Delta method, the corresponding stochastic optimization problems have been converted to quadratic and linear programs. The proposed scheme is evaluated on a large-scale case that includes ten interconnected microgrids. The results indicated that the proposed scheme successfully reduces the system wide operating cost, achieves the supply-demand balance in each microgrid, and brings the energy exchange between DNO and main grid to a predefined trajectory.

Keywords: Microgrid; Renewable energy; Distributed model predictive control; Stochastic optimization (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from
http://www.elsevier. ... 405891/bibliographic

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Series data maintained by Dana Niculescu ().

Page updated 2017-09-29
Handle: RePEc:eee:appene:v:185:y:2017:i:p1:p:939-952