EconPapers    
Economics at your fingertips  
 

Analyzing wind turbine directional behavior: SCADA data mining techniques for efficiency and power assessment

Francesco Castellani, Davide Astolfi, Paolo Sdringola, Stefania Proietti and Ludovico Terzi

Applied Energy, 2017, vol. 185, issue P2, 1076-1086

Abstract: SCADA control systems are the keystone for reliable performance optimization of wind farms. Processing into knowledge the amount of information they spread is a challenging task, involving engineering, physics, statistics and computer science skills. This work deals with SCADA data analysis methods for assessing the importance of how wind turbines align in patterns to the wind direction. In particular it deals with the most common collective phenomenon causing clusters of turbines behaving as a whole, rather than as a collection of individuality: wake effects. The approach is based on the discretization of nacelle position measurements and subsequent post-processing through simple statistical methods. A cluster, severely affected by wakes, from an onshore wind farm, is selected as test case. The dominant alignment patterns of the cluster are identified and analyzed by the point of view of power output and efficiency. It is shown that non-trivial alignments with respect to the wind direction arise and important performance deviations occur among the most frequent configurations.

Keywords: Wind energy; Wind turbines; SCADA control system; Performance evaluation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915016220
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:185:y:2017:i:p2:p:1076-1086

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2015.12.049

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:185:y:2017:i:p2:p:1076-1086