EconPapers    
Economics at your fingertips  
 

Optimization of a Gas Switching Combustion process through advanced heat management strategies

Schalk Cloete, Abdelghafour Zaabout, Matteo C. Romano, Paolo Chiesa, Giovanni Lozza, Fausto Gallucci, Martin van Sint Annaland and Shahriar Amini

Applied Energy, 2017, vol. 185, issue P2, 1459-1470

Abstract: Gas Switching Combustion (GSC) is a promising new process concept for energy efficient power production with integrated CO2 capture. In comparison to conventional Chemical Looping Combustion (CLC) carried out in interconnected fluidized beds, the GSC concept will be substantially easier to design and scale up, especially for pressurized conditions. One potential drawback of the GSC concept is the gradual temperature variation over the transient process cycle, which leads to a drop in electric efficiency of the plant. This article investigates heat management strategies to mitigate this issue both through simulations and experiments. Simulation studies of the GSC concept integrated into an IGCC power plant show that heat management using a nitrogen recycle stream can increase plant efficiency by 3 percentage points to 41.6% while maintaining CO2 capture ratios close to 90%. Reactive multiphase flow simulations of the GSC reactor also showed that heat management can eliminate fuel slip problems. In addition, the GSC concept offers the potential to remove the need for a nitrogen recycle stream by implementing a concentrated air injection that extracts heat while only a small percentage of oxygen reacts. Experiments have shown that, similar to nitrogen recycle, this strategy reduces transient temperature variations across the cycle and therefore merits further investigation.

Keywords: Gas Switching Combustion; Chemical Looping Combustion; CO2 capture; Fluidized bed reactor; Power plant calculations (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916305025
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:185:y:2017:i:p2:p:1459-1470

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2016.04.037

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:185:y:2017:i:p2:p:1459-1470