Probabilistic approach for uncertainty-based optimal design of chiller plants in buildings
Qi Cheng,
Shengwei Wang,
Chengchu Yan and
Fu Xiao
Applied Energy, 2017, vol. 185, issue P2, 1613-1624
Abstract:
Conventional design of chiller plant is typically based on the peak cooling loads of buildings, while the cooling load reaches its peak level for only a small proportion of time in a year. This results in that even a perfectly designed chiller plant could be very significantly oversized in actual operation and it thus causes significant energy wastes. In this paper, an uncertainty-based optimal design based on probabilistic approach is proposed to optimize the chiller plant design. It ensures that the chiller plant operate at a high efficiency and the minimum annual total cost (including annual operational cost and annual capital cost) could be achieved under various possible cooling load conditions, considering the uncertain variables in cooling load calculation (i.e., weather conditions). On the premise of determining the minimum sufficient number of Monte Carlo simulation, this method maximizes the operating COP (coefficient of performance) and minimizing the annual total cost. A case study on the chiller plant of a building in Hong Kong is conducted to demonstrate the design process and validate the uncertainty-based optimal design method.
Keywords: Probabilistic approach; Uncertainty-based optimal design; Chiller plant; Simulation number; Energy efficiency (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915013240
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:185:y:2017:i:p2:p:1613-1624
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.10.097
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().