Theoretical analysis of two coupling modes of a 300-Hz three-stage thermoacoustically driven cryocooler system at liquid nitrogen temperature range
Jingyuan Xu,
Guoyao Yu,
Limin Zhang,
Wei Dai and
Ercang Luo
Applied Energy, 2017, vol. 185, issue P2, 2134-2141
Abstract:
Highly reliable, compact, and efficient cryocoolers with a cooling power of several watts to several hundred watts at liquid nitrogen temperatures around 77K are indispensable for cooling superconducting devices and infrared detectors, especially in aerospace applications. This paper introduces three-stage traveling-wave thermoacoustically driven cryocooler systems operating around 300Hz that meet the demand. In addition to the potential reliability due to the lack of moving components in a thermoacoustically driven cryocooler, this configuration has the potential for both compact size and high efficiency owing to the slim resonance tube and acoustic power recovery. Numerical simulations are performed to investigate two coupling modes: coupling the cooler at the branch of the engine (BR-coupling) or coupling the cooler parallel to the engine (PA-coupling). First, the two topologies are carefully designed to obtain high total exergy efficiency and the optimal dimensions are presented. Then, the axial distributions of the phase difference and the acoustic power are further provided to better illustrate the coupling characteristics. Furthermore, a theoretical analysis is performed on the influence of the two acoustic tubes in the PA-coupling mode and the result shows the importance of the tube dimensions. With a heating temperature of 850K, total exergy efficiencies of 11.4% and 14.8% have been achieved in the BR-coupling and PA-coupling modes, respectively. The PA-coupling mode’s higher efficiency is due to recycling the acoustic power entering the pulse tube cryocooler, whereas BR-coupling fails to recycle any acoustic power. However, the energy feedback in PA-coupling may cause structural complexity. Generally speaking, both coupling mode systems show encouraging prospects for aerospace applications.
Keywords: 300Hz; Three-stage; Coupling mode; Thermoacoustically driven cryocooler; Liquid nitrogen temperature (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916305165
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:185:y:2017:i:p2:p:2134-2141
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.04.055
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().