Intensification of transesterification via sonication numerical simulation and sensitivity study
Isam Janajreh,
Tala ElSamad and
Mohammed Noorul Hussain
Applied Energy, 2017, vol. 185, issue P2, 2159 pages
Abstract:
Transesterification is known as slow reaction that can take over several hours to complete. The process involves two immiscible reactants to produce the biodiesel and the byproduct glycerol. Biodiesel commercialization has always been hindered by the long process times of the transesterification reaction. Catalyzing the process and increasing the agitation rate is the mode of intensifying the process additional to the increase of the molar ratio, temperature, circulation that all penalize the overall process metrics. Finding shorter path by reducing the reaction into a few minutes and ensures high quality biodiesel, in economically viable way is coming along with sonication. This drastic reduction moves the technology from the slow batch process into the high throughput continuous process. In a practical sense this means a huge optimization for the biodiesel production process which opens pathways for faster, voluminous and cheaper production. The mechanism of sonication assisted reaction is explained by the creation of microbubbles which increases the interfacial surface reaction areas and the presence of high localized temperature and turbulence as these microbubbles implode. As a result the reaction kinetics of sonicated transesterification as inferred by several authors is much faster. The aim of this work is to implement the inferred rates in a high fidelity numerical reactive flow simulation model while considering the reactor geometry. It is based on Navier–Stokes equations coupled with energy equation for non-isothermal flow and the transport equations of the multiple reactive species in an annular continuous reactor. Following model validation, the spatial reaction rate is evaluated to bring more insight to the reaction progression and species distributions. The two methods (conventional and sonication) then are compared on the basis of their sensitivity to the Alcohol:Oil molar ratio. The spatial distribution of the yield and their favorable sonication method is a key enabler of the development of an optimal process reactor that renders more economy to the process when operating at lower AL:TG ration, catalyst amount, and temperature.
Keywords: Sonication transesterification; Reactive flow; Rate of reaction; Computational fluid dynamics (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916301258
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:185:y:2017:i:p2:p:2151-2159
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.02.002
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().