EconPapers    
Economics at your fingertips  
 

TEOS/silane coupling agent composed double layers structure: A novel super-hydrophilic coating with controllable water contact angle value

Hu Yan, Wang Yuanhao and Yang Hongxing

Applied Energy, 2017, vol. 185, issue P2, 2209-2216

Abstract: The soiling of the photovoltaic (PV) modules’ front surfaces decreases the power generation efficiency a lot. In this paper, a novel self-cleaning (super-hydrophilic) glass coating material with double layers’ structure is prepared and the synthesis process is simple and low-price. This super-hydrophilic coating barely decreases the transparency of the glass above solar cells in the PV modules. It only reduces about 2.9% of transparency compared with original glass. Briefly, TEOS (Tetraethylorthosilicate) is skillfully utilized as hydrophobic interlayer, connected to the substrate surface and super-hydrophilic layer, whose effective component is a particular silane-coupling agent named as 2-[acetoxy (polyethyleneoxy) propyl] triethoxysilane (abbreviated as SIA). The interlayer has three advantages: firstly, after the TEOS hydrophobic layer is coated, SIA’s hydrophobic siloxane terminals assemble toward this layer; secondly, SIA’s steric hindrance would decrease obviously because most of the molecules assemble orderly on the interlayer; thirdly, TEOS provides much more grafting sites and more SIA molecules are grafted. Thus, with the increasing TEOS’s concentration, the SIA’s coating becomes firmer, and the SIA’s concentration influences the water contact angle (CA). When it is bigger than 2.5%, the CA is less than 10° and the surface turns to super-hydrophilic. Besides, according to the samples with different SIA’s concentration and contact angle value, a fitting curve whose R2 is higher than 0.95 is made. Based on this, the experimental contact angle value of a surface made from this SIA could be predicted. And the difference between experimental and theoretical contact angle value ranges from 1.11% to 5.88%.

Keywords: Silane coupling agent; Self-cleaning; Super-hydrophilic; TEOS; Contact angle (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915012234
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:185:y:2017:i:p2:p:2209-2216

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2015.09.097

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:185:y:2017:i:p2:p:2209-2216