A diagnostic tool for detection of flow-regimes in a microchannel using transient wall temperature signal
Mrinal Jagirdar and
Poh Seng Lee
Applied Energy, 2017, vol. 185, issue P2, 2232-2244
Abstract:
Flow boiling in microchannels has been receiving a lot of attention in recent years because of its high heat flux removal capabilities at low flow rates and low pumping power. An important aspect of flow-boiling experiments is prediction or detection of the prevalent flow-regime. Currently, most researchers use high-speed camera for flow visualization for regime detection. However, in some cases due to limitations of the experimental setup and test-piece, such as multi-layer cooling of 3D IC stack, this may not be feasible. In this paper, the influence of flow-regime on frequency domain of local temperature data of the wetted surface is studied. Experiments have been performed synchronously with high speed flow visualization on a single microchannel with width and length of 2.54mm and 25.4mm respectively. The microchannel heights tested were 0.14,0.28 and 0.42mm. De-gassed, de-ionized water was used as the working fluid. Mass fluxes tested ranged from 200 to 1000kg/(m2s). Depending on the prevalent flow regime, some of the highest of peak amplitudes in the frequency domain were quite distinct. Within the bounds of current experimental parameters, it is concluded that local transient temperature data can be a potential diagnostic tool for detection of flow-regimes. (A shorter version of this paper was presented at the 7th International Conference on Applied Energy (ICAE2015), March 28–31, 2015, Abu Dhabi, UAE (Original paper title: “Temperature transients for detection of flow-regimes in a mini/microchannel” and Paper No.: 430).)
Keywords: Flow boiling; Microchannel; Flow-regime detection; Temperature transients (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261915016840
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:185:y:2017:i:p2:p:2232-2244
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2015.12.111
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().