A unified framework for model-based multi-objective linear process and energy optimisation under uncertainty
Vassilis M. Charitopoulos and
Vivek Dua
Applied Energy, 2017, vol. 186, issue P3, 539-548
Abstract:
Process and energy models provide an invaluable tool for design, analysis and optimisation. These models are usually based upon a number of assumptions, simplifications and approximations, thereby introducing uncertainty in the model predictions. Making model based optimal decisions under uncertainty is therefore a challenging task. This issue is further exacerbated when more than one objective is to be optimised simultaneously, resulting in a Multi-Objective Optimisation (MO2) problem. Even though, some methods have been proposed for MO2 problems under uncertainty, two separate optimisation techniques are employed; one to address the multi-objective aspect and another to take into account uncertainty. In the present work, we propose a unified optimisation framework for linear MO2 problems, in which the uncertainty and the multiple objectives are modelled as varying parameters. The MO2 under uncertainty problem (MO2U2) is thus reformulated and solved as a multi-parametric programming problem. The solution of the multi-parametric programming problem provides the optimal solution as a set of parametric profiles.
Keywords: Multi-objective optimisation; Multi-parametric programming; Optimisation under uncertainty; Energy systems (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916306791
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:186:y:2017:i:p3:p:539-548
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.05.082
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().