Process integration of a Calcium-looping process with a natural gas combined cycle power plant for CO2 capture and its improvement by exhaust gas recirculation
Yue Hu and
Hyungwoong Ahn
Applied Energy, 2017, vol. 187, issue C, 480-488
Abstract:
In this study, it was sought to find an efficient way to integrate a Ca-looping process with a Natural Gas Combined Cycle (NGCC) power plant for its post-combustion CO2 capture. Compared to its application to coal combustion flue gas, Ca-looping would incur augmented energy penalty when integrated with a NGCC of which the flue gas contains only 4.0mol% CO2. The reduced CO2 concentration in the feed requires the carbonator to operate at a lower temperature and more solids to circulate between carbonator and calciner for keeping up the carbon capture efficiency at 90%. However, this study demonstrated that such negative effects could be alleviated greatly by implementing 40% exhaust gas recirculation to the NGCC with the CO2 concentration in the flue gas increasing up to 6.8%. Accordingly, the resulting net power efficiency increased notably 1.6% points in comparison to its equivalent non-EGR NGCC case and it was only 0.9% points less than amine capture case. This study exhibited that exhaust gas recirculation would be crucial in decarbonising a NGCC power plant by Ca-looping.
Keywords: Ca-looping; Exhaust gas recirculation; Natural gas combined cycle; Process integration and simulation; CO2 capture (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916315999
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:187:y:2017:i:c:p:480-488
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.11.014
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().