A novel projected two-binary-variable formulation for unit commitment in power systems
Linfeng Yang,
Chen Zhang,
Jinbao Jian,
Ke Meng,
Yan Xu and
Zhaoyang Dong
Applied Energy, 2017, vol. 187, issue C, 732-745
Abstract:
The thermal unit commitment (UC) problem in power systems can usually be formulated as a mixed-integer quadratic programming (MIQP) problem, which is an NP-hard problem for practical-scale systems and thus is difficult to solve efficiently. In this paper, by projecting the unit generation level onto the interval [0,1] and using reformulation techniques, a novel two-binary-variable (2-bin) MIQP formulation for the UC problem is proposed. The proposed 2-bin formulation is more compact than the state-of-the-art one-binary-variable (1-bin) and three-binary-variable (3-bin) formulations. Moreover, the 2-bin formulation is tighter than the 1-bin and 3-bin formulations in terms of the quadratic cost function, and it is tighter than the 1-bin formulation in terms of linear constraints. The proposed model was tested on 73 instances, including 43 realistic instances and 30 8-unit-based instances, over a scheduling period of 24h for systems ranging from 10 to 1040 generating units. The simulation results show that our proposed MIQP UC formulation is the tightest and most compact model and can be solved most efficiently. After introducing a sequence of piecewise perspective cuts to approximate the quadratic operational cost function, the three UC MIQP formulations can be approximated by three corresponding mixed-integer linear programming (MILP) formulations. Our experiments show that the proposed 2-bin MILP formulation also performs the best in terms of solution times.
Keywords: Unit commitment; Project; Compact; Tight; Reformulation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916317275
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:187:y:2017:i:c:p:732-745
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.11.096
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().