Renew, reduce or become more efficient? The climate contribution of biomass co-combustion in a coal-fired power plant
Jan H. Miedema,
René M.J. Benders,
Henri C. Moll and
Frank Pierie
Applied Energy, 2017, vol. 187, issue C, 873-885
Abstract:
Within this paper, biomass supply chains, with different shares of biomass co-combustion in coal fired power plants, are analysed on energy efficiency, energy consumption, renewable energy production, and greenhouse gas (GHG) emissions and compared with the performance of a 100% coal supply chain scenario, for a Dutch situation. The 60% biomass co-combustion supply chain scenarios show possibilities to reduce emissions up to 48%. The low co-combustion levels are effective toreduce GHG emissions, but the margins are small. Currently co-combustion of pellets is the norm. Co-combustion of combined torrefaction and pelleting (TOP) shows the best results, but is also the most speculative.
Keywords: Biomass; Bio-energy; Co-combustion; Supply chain analysis; Pulverised coal power plant (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191631618X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:187:y:2017:i:c:p:873-885
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.11.033
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().