Day-ahead optimal dispatch for wind integrated power system considering zonal reserve requirements
Fan Liu,
Zhaohong Bie,
Shiyu Liu and
Tao Ding
Applied Energy, 2017, vol. 188, issue C, 399-408
Abstract:
Large-scale integration of renewable power presents a great challenge for day-ahead dispatch to manage renewable resources while provide available reserve for system security. Considering zonal reserve is an effective way to ensure reserve deliverability when network congested, a random day-ahead dispatch optimization of wind integrated power system for a least operational cost is modeled including zonal reserve requirements and N−1 security constraints. The random model is transformed into a deterministic one based on the theory of chance constrained programming and a determination method of optimal zonal reserve demand is proposed using the minimum confidence interval. After solving the deterministic model, the stochastic simulation is conducted to verify the validity of solution. Numerical tests and results on the IEEE 39 bus system and a large-scale real-life power system demonstrate the optimal day-ahead dispatch scheme is available and the proposed method is effective for improving reserve deliverability and reducing load shedding after large-capacity power outage.
Keywords: Day-ahead optimal dispatch; Zonal reserve requirements; Wind integrated power system; Stochastic programming; N−1 security constrains (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916317342
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:188:y:2017:i:c:p:399-408
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.11.102
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().