Steady-state optimisation of a multiple cryogenic air separation unit and compressor plant
Richard Adamson,
Martin Hobbs,
Andy Silcock and
Mark J. Willis
Applied Energy, 2017, vol. 189, issue C, 232 pages
Abstract:
The development and on-line application of a steady-state optimisation strategy for a multiple cryogenic air separation unit and compressor plant is discussed. Implemented using mixed integer linear programming (MILP), it is demonstrated that the optimiser improves site efficiency at steady state by reduction of power consumption by up to 5% (a significant saving for such an energy intensive process) while meeting customer demand specifications. This is achieved through determination of the production distribution of the air separation units and optimal load distribution of the compression network, while simultaneously ensuring network material balance and network component operating constraints are met. In addition, the work demonstrates achievable benefits of demand side load management during peak power pricing periods, using liquid oxygen as an effective energy storage device. A key constituent of the optimisation strategy is linear modelling to predict individual unit power consumption. Piece-wise linear data-based models of compressor and air separation unit power are shown to provide accurate models which improve existing on-site power prediction by up to 80% for compressors and 60% for the air separation units.
Keywords: Air separation; Compressors; MILP; Optimisation; Piece-wise linear modelling (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916318244
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:189:y:2017:i:c:p:221-232
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.12.061
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().