Off-design performance of concentrated solar heat and coal double-source boiler power generation with thermocline energy storage
Maolong Zhang,
Chao Xu,
Xiaoze Du,
Muhammad Amjad and
Dongsheng Wen
Applied Energy, 2017, vol. 189, issue C, 697-710
Abstract:
Integration of solar thermal energy into a coal-fired power station is a promising technology for many coal-dependent countries. This work investigated the off-design performance of such a dual heat source boiler power generation from a system-level modelling approach. As an example study, heat from a solar power tower (SPT) was integrated into a 660MW supercritical coal-fired power unit, and two integration schemes were considered. A system level analytical model was established that coupled the transient process of heliostat field with one-tank thermocline thermal energy storage. The off-design performance of such a hybrid system in one typical year was analyzed accordingly. The results revealed the importance of the seasonal variation of direct normal insolation (DNI), thermal energy storage scheme and integration methodology. Both the quality of sunshine and the amount of sun flux could influence the solar power efficiency; while an increase in the storage volume could decrease the discharging efficiency. Under the maximum capacity of DNI, increasing the storage capacity by 1h could improve the efficiency by 0.5–0.8%. For either integration scheme, the coal consumption could be economized at least 9×103ton per year. The maximum of solar efficiency for Scheme I, where solar energy was used to heat the superheat steam, could reach 20.42%, which also came with a penalty of reduced efficiency of thermal receiver. Under the minimum storage capacity, the solar efficiency for Scheme I was changed from 16.7% to 19.6%, while for Scheme II the change was from 14.7% to 17.3%.
Keywords: Concentrated solar heat and coal double-source boiler; Supercritical power generation; System integration; Off-design performance (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261916318657
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:189:y:2017:i:c:p:697-710
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2016.12.095
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().