EconPapers    
Economics at your fingertips  
 

Impact of outdoor PM2.5 on natural ventilation usability in California’s nondomestic buildings

Nuno R. Martins and Guilherme Carrilho da Graça

Applied Energy, 2017, vol. 189, issue C, 724 pages

Abstract: In California, the majority of office and other nondomestic buildings use mechanical cooling and ventilation even when an optimized natural ventilation (NV) system could meet cooling and fresh air requirements. Unfortunately, in most large California cities, the outdoor environment is contaminated with noise, fine particles, heat, toxic gases or, in most cases, a combination of all four. This contaminated environment has a detrimental impact on naturally ventilated buildings due to their lack of filtration and outdoor noise attenuation systems. This paper presents a study on the impact of airborne particle pollution on the potential for NV cooling of office buildings in California. The study uses a multi-year database of measured hourly weather data and PM2.5 data for the five largest metropolitan areas in California, representative of 90% of the state’s population. The analysis is performed in two stages with increasing complexity. The first stage is a statistical analysis that identifies coincidence between high PM2.5 and outdoor air temperatures that are suitable for NV. In addition, this phase includes multivariable correlation to identify particular weather events or time periods that affect PM2.5 levels. The second level of analysis is more complex, using building thermal simulation (EnergyPlus) to perform a detailed assessment of NV potential in the five urban locations, calculating NV flow rates, resulting indoor exposure to PM2.5 and supplemental HVAC system energy consumption. The results show that using NV in moments when the outside weather is favorable can result in HVAC energy savings of 25–80%. However, limiting NV use to moments with outdoor particle levels below 12μg/m3 decreases this energy saving potential to 20–60%. In addition, in the majority of the cities analyzed in this study, the use of NV leads to an increase in indoor exposure to PM2.5 of outdoor origin of 400–500%.

Keywords: Natural ventilation; Simulation; PM2.5; Particle exposure; Indoor air; Air quality modeling (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191631875X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:189:y:2017:i:c:p:711-724

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2016.12.103

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:189:y:2017:i:c:p:711-724